Distributional and Environmental Effects of an Emissions-Differentiated Car Sales Tax

Robin Stitzing

Aalto University

robin.stitzing@aalto.fi

October 18, 2016

Reseach Questions

How did the Car Tax Reform Affect the Market for New Cars?

- Environmental Effects
 - What are the environmental effects?
 - What is driving the observed decline of new-car \mbox{CO}_2 emissions rates?
- Distributional Effects
 - Who are the winners and losers of this environmental policy?

This Paper

Differentiated-product oligopoly model

- ▶ based on Berry et al. (1995, "BLP") & Petrin (2002)
- ► Random-coefficient logit demand w. heterogeneous consumers
- ► Nash-Betrand price competition w. strategic price-setting

Benefits of Institutional Setup

- ► Small market size → exogenous product characteristics
- Novel, reliable register data
- New IV based on tax rate differentiation by CO2 emissions rating

CO2 Emissions Rates of New Cars

Key Results

Decline of CO_2 emissions rates not driven by tax policy

- ► Effect on 2008-2010 CO₂ emissions rate: 1.9 g/km
- ► Compared to 27.8 g/km decline from 2007 to 2010

Increased local pollution

- CO₂-based taxation favors diesel engines
- ▶ 9.5% more new cars and 11.3% higher diesel market share

Positive net welfare effect but regressive policy

- Loss of tax revenue
- Disproportional benefit to high-income consumers

Supply: Multi-Product Oligopoly Pricing

- F multi-product firms engage in pure-strategy Nash-Betrand price competition
- ► Operating profits of firm *f*:

$$\pi_f(\boldsymbol{p^f}) = \sum_{j \in f} \left(\frac{p_j}{1 + \underbrace{\tau_j(CO2_j)}_{\text{tax rate}}} - mc_j(C_j; \boldsymbol{\theta}) \right) \times \underbrace{s_j(\boldsymbol{p}; \boldsymbol{X}; \boldsymbol{\theta}) M}_{\text{demand for car } j}$$

- ► C_j: cost characteristics of car j
- $CO2_j$: CO₂ emissions rating of car j

Demand: Indirect Utility

• Conditional indirect utility of household *i*:

$$u_{i,j} = \alpha_i \, p_j + \beta_i \, X_j + \xi_j + \epsilon_{i,j}$$

where

- p_j : consumer price (including tax)
- X_j : observed non-price product characteristics
- ξ_j : Unobserved product quality / demand shock
- $\epsilon_{i,j}$: idiosyncratic logit taste shock

Data & Estimation

Sources: Government Register Data 2004-2010

- ► Cars: vehicle registration database + car tax database
- ► Households: Finnish Linked Employee-Employer Data
 - Distribution of net household income
 - Net household income of car-buying households

Estimation

- ► GMM estimation: Berry et al. (1995,1999) & Petrin (2002)
- Micro moments: income group probabilities conditional on car purchase
- ▶ New IV: CO₂ tax IV to complement BLP instruments

2008-2010 Percentage Change of

CO2 emissions level (g/km)				
< 130	130-159	160-199	200-249	\geq 250
-10.8	-8.3	-5.9	-0.3	5.6
12.3	11.1	9.5	6.8	-2.0
-29.6	-22.5	-15.3	-0.8	11.1
20.8	12.8	6.3	-14.2	-35.2
	< 130 -10.8 12.3 -29.6 20.8	CO2 em < 130	CO2 emissions level < 130	CO2 emissions level (g/km) < 130

- ► Firms have (limited) market power
- Strategic pricing mitigates intended pass-through to consumer prices

Distributional Effects of 2008 Car Tax Reform

Aggregate Welfare Effects 2008-2010

Variable (Mio. €)	Change
Tax revenue	- 352
Firms' profits	234
Consumer welfare	572
CO_2	- 5
Other externalities	- 188
Net welfare	260

Distribution of consumer welfare change (2010)

Net HH Income	Δ CW	Δ CW \mid purchase*
< 25.303€	10€	1,200€
25.303 € - 42.899 €	34 €	1,388 €
> 42.899€	71 €	1,877 €

Concluding Remarks

This paper

- estimates differentiated-product oligopoly model
- evaluates fiscal policy using counterfactual simulations

Implications for optimal policy

- ► Tax design: tax incidence and market structure matter
- ► CO₂-Based Car Taxation:
 - little effect on CO₂ emissions rates given concurrent supply-side standards
 - local vs. global pollution trade-off due to Diesel fuel
- ► Coordination between different levels of government crucial

Environmental Effects of 2008 Car Tax Reform

2008-2010

Variable	Change	percent
Market size (sales)	27,833	9.5 %
Diesel mkt share (%)	4.8	11.3 %
$CO_2 \; (g/km)$	-1.9	-1.2 %

- ► Negative CO₂ trend not driven by domestic tax policy
- Effect on total lifetime emissions economically unimportant
- Preferable tax treatment of diesel cars
 → local pollution problem

Demand: Random Coefficients

Price Coefficient:

$$\alpha_{i}(y_{i}) = \begin{cases} \alpha_{1}/y_{i} & \text{if } y_{i} < \bar{y}_{1} \\ \alpha_{2}/y_{i} & \text{if } \bar{y}_{1} \le y_{i} < \bar{y}_{2} \\ \alpha_{3}/y_{i} & \text{if } y_{i} > \bar{y}_{2}, \end{cases}$$
(1)

- y_i : net household income
- \rightarrow poorer households more price sensitive than richer ones
- Random coefficients on non-price product characteristics normally distributed

Mean Effects of 2008 Car Tax Reform

2008-2010

Variable	Change	Percent
Price*	-2,046	-7.3 %
Markup*	307	8.1 %
Tax*	-2,335	-19.4 %

* weighted by sales under non-differentiated tax system

in 2005 Euros

Supply: Marginal Costs

- Firms produce at constant marginal cost mc_j
- Log marginal costs linear in cost components:

$$\log(\mathsf{mc}_j) = rC_j + \omega_j$$

where

- C_j : observed cost component
- ω_j : unobserved cost component

Supply: Multi-Product Oligopoly Pricing

- F firms engage in pure-strategy Nash-Betrand price competition
- ► Operating profits of firm *f*:

► J FOCs for static price competition:

$$s_j(\boldsymbol{p};\boldsymbol{X};\boldsymbol{\theta}) + \sum_{r \in \mathcal{F}_f} (\frac{p_r}{1 + tr_r} - mc_r) \frac{\partial s_r(\boldsymbol{p};\boldsymbol{X};\boldsymbol{\theta})}{\partial p_j} = 0 \quad \forall j \in \mathcal{F}_f.$$

Estimation via 2-Step GMM

Moment Sets

- Market shares: $s s(\theta) = 0$
 - ightarrow predicted market shares equal observed shares
- Demand: $E[\xi(\theta)' Z] = 0$

 \rightarrow demand shocks orthogonal to instrument vector Z

• Supply:
$$E[\omega(\theta)'Z] = 0$$

 \rightarrow supply shocks orthogonal to instrument vector Z

► Micro: income tercile probabilities conditional on purchase $E \left[I_{FLEED}^{i} \left\{ y_{i} < \bar{y}_{1} | \text{purchase} \right\} - \bar{P}_{model} \left(y < \bar{y}_{1} | \text{purchase}; \theta \right) \right] = 0$ $E \left[I_{FLEED}^{i} \left\{ y_{1} \le y_{i} \le \bar{y}_{2} | \text{purchase} \right\} - \bar{P}_{model} \left(\bar{y}_{1} \le y_{i} \le \bar{y}_{2} | \text{purchase}; \theta \right) \right] = 0$ $E \left[I_{FLEED}^{i} \left\{ \bar{y}_{1} \le y_{i} \le \bar{y}_{2} | \text{purchase} \right\} - \bar{P}_{model} \left(y_{i} > \bar{y}_{2} | \text{purchase}; \theta \right) \right] = 0$

Intuition

- ► Price: function of attributes of cars produced by other firms.
- Consumer valuation of car j independent of rival cars
- Multi-product extension: characteristics of other cars by same firm

Standard Breshnahan et al.(1997)/ BLP(1995) instruments

- ► sum of characteristics over firms' other products
- sum of characteristics over products of competing firms
- also by fuel-type segment

Demand Parameter Estimates

Demand Variable	Mean	Standard Deviation
Constant	-18.470**	6.292**
	(2.587)	(1.731)
Curb weight (100kg)	5.615**	1.463**
	(1.263)	(0.568)
Power / weight	4.849**	2.417**
	(1.115)	(1.083)
Fuel cost (EUR / 100km)	-0.276**	
	(0.066)	
Diesel engine	-1.342**	** z-statistics > 2
	(0.346)	* z-statistics > 1
- Price / Income $lpha_1$	5.956**	Not shown:
	(1.453)	Market segment, time,
- Price / Income $lpha_2$	6.592**	brand-level fixed-effects
	(1.355)	
- Price / Income $lpha_3$	8.255**	N = 2,156
	(2.424)	

Cost Parameter Estimates

Cost Variable	Mean
Constant	2.574**
	(0.237)
Log engine power	0.611**
	(0.063)
Log curb weight	1.338**
	(0.160)
Log fuel consumption	-0.202
	(0.103)
Diesel engine	0.034*
	(0.0034)

Robust standard errors in parentheses.

* z-statistics > 1, ** z-statistics > 2 Number of observations used in estimation = 2,156

Not shown: Market segment, time, and brand-level fixed-effects